Project Title: Development of Novel Ceramic Nanofilm-Fiber integrated Optical Sensors for Rapid Detection of Coal Derived Synthesis Gas

Grant #: DE-NT0008062

Project Duration: 04/01/2009 – 03/31/2012

Project Manager: Norm Popkie

Junhang Dong (PI)

University of Cincinnati

Hai Xiao (CoPI)

Missouri University of Science and Technology

Student Participants: Xiling Tang (UC) and Kurtis Remmel (UC)

Hongbiao Duan (MST)

Outline of Presentation

- 1. Objective and Schedule
- 2. Concepts of Fiber Optic Sensors
 - Proposed two types of FOS
 - Material development
- 3. Research Progress
 - Development of fiber device
 - Materials research
- 4. Summary of Work Done
- 5. Work Plans for Year-2

Appendix: Publications

1. Project Objective and Schedule

Project Objective :

- To investigate and demonstrate nanocrystalline doped-ceramic coated fiber optic sensors (FOS) for rapid gas detection in syngas streams and combustion gases.
- To develop sensors and sensor materials for H₂, CO and H₂S detection at >500°C and pressure up to 250 Psi.

Research schedule:

- Year 1: Model design of the LPFG-coupled interferometer and evanescent tunneling fiber sensors; development of nanocrystalline doped-ceramic materials suitable for gas sensing
- Year 2: Sensor fabrication (including integration of the nanofilm with fiber devices) and improvement of the ceramic nanofilm properties and fiber structures for enhancing sensor performance
- Year 3: Evaluation of sensor performance in multicomponent gas mixtures under temperatures >500°C and pressures up to 250 psi.

Optical Fiber Sensor

Optical fiber: A light pipe made of fused silica materials

Light guiding via total internal reflection at the core-cladding interface

Fiber sensors: proven advantages for various applications

- Small size/lightweight
- Immunity to electromagnetic interference (EMI)
- Resistance to chemical corrosion
- High temperature capability
- High sensitivity
- Remote operation
- Multiplexing and distributed sensing

2. Concept of Nanofilm-Fiber Optical Gas Sensor

Mechanism:

$$\lambda_R = (n_{eff} - n_{clad})\Lambda$$

$$\frac{d\lambda_R}{dn_{ov}} = \frac{d\lambda_R}{dn_{cl,eff}} \frac{dn_{cl,eff}}{dn_{ov}}$$

$$DI_R = f(n_{ov})$$
 where $n_{ov} = g(p_{gas}, T)$

Therefore, DI_R represents gas concentration at a fix temperature

- EXAMPLE: Nanocrystalline doped ceramic coated <u>long period fiber</u> grating (LPFG)
 - Device: resonance wavelength of LPFG is very sensitive to environmental refractive index change
 - Mechanism: chemical sorption or gassolid reaction induced refractive index changes (Δn) of the coated ceramic thin film
 - Detection: Shift in the resonance wavelength (Δλ) of LPFG

Previous Results:

$Sr(Ce_{1-x}Zr_x)_{0.9}Y_{0.1}O_{3-\delta}(SCZY)$ thin film for H_2 sensing

SCZY-LPFG showed high selectivity, good sensitivity, and reasonable response time at 500°C and 1 atm; thermal drifting of signal is a concern.

Previous Results

Copper-doped zirconia (CDZ) Coating on LPFG for CO Sensing

Nanocrystalline $Cu_{0.16}Zr_{0.84}O_{1.84}$ thin film on optical fiber

16%Cu CDZ-LPFG showed high good sensitivity and fast response to CO at 550°C and 1 atm; thermal drifting of signal and CDZ chemical instability in high concentration of CO are major concerns.

Response to CO concentration

Sensor reversibility and response speed

2.1 Two Types of FOS Proposed in This Project

1) Mach-Zehnder (MZI) and Michelson interferometers (MI)

- LPFG coupling light from core to cladding
- Core-cladding mode interference
- High-T capability and self-compensation for temperature drift

2) Cladding Tunneling LPFG Pair

- Tunneling through two LPFGs fusion spliced together
 - Extremely high sensitivity to refractive index change
 - High-T capability; Self-compensation for temperature drift

2.2 Development of Sensing Materials

- Proton Conducting Perovskite Oxides (for H2 detection)
- Copper-Doped Zirconia (CDZ; for CO detection)
- Characterization of Materials and test LPFG-based sensors
- Application of Selected Materials to the Two Types of Fiber Devices (to be performed in project year 2)

3. Research Progresses in Year 1

- Model-based design of fiber sensor devices
- Materials development and characterizations

3.1 Design and Fabrication of Fiber devices

Type 1 – In line interferometer (two-section)

L= 1/2 period

L= 3/4 period

L= 1 period

Temperature and RI responses

 Two bands have almost the same responsivity towards temperature and refractive index

Three-Section Device

Light re-coupling/re-mixing through the third section.

Two-section, L = 1/2 period

 The resonant wavelength will change because of third section of LPFG. What happen if we add another section of LPFG (the threesection PS-LPFG)?

Three-section, L = 1/2 period

Temperature Sensitivity of Three-Section

- Two attenuation bands shifted to the long wavelength as temperature increased.
- The right (red) band had a higher temperature sensitivity than the left (blue) band

Center wavelength shift of two bands of 5th order Three-Section PS-LPFG versus temperature

RI Sensitivity of Three-Section PS-LPFG

- The right (red) band has higher refractive index sensitivity than the left (blue) band.
- It is possible to use a three-section PS-LPFG for multiparameter measurement

Center wavelength shift of two bands of 5th order Three-Section PS-LPFG versus refractive index

Mode Dependent Sensitivity

 Different cladding mode LPFG has different sensitivity to temperature and refractive index.

10th Order Mode LPFG

Turning Point Device

• >220C, no spectral shift, intensity changes only

Type 2 – Side Coupled Devices

Side coupled LPFG pair

LP05 Pair

LP06 Pair

Side Coupled LPFG-Taper

LP05-Taper Coupler

LP06-Taper Coupler

Side Coupled Tapers

Interferometer behavior

Spectral shift as a function of the overlapping length

3.2 Development of Sensing Materials

Proton Conducting Perovskite Oxides

- Selection of Proton Conducting Perovskite Oxides:
 - Cerate-based: higher sensitivity, low stability in CO₂
 - Zirconate-based: higher stability in CO₂, lower sensitivity
- Four perovskite materials synthesized and tested
 - $Sr(Ce_{0.8}Zr_{0.1})Y_{0.1}O_{2.95} (SCZY)$
 - $SrCe_{0.95}Tm_{0.05}O_{3-a} (SCTm)$
 - SrCe_{0.95}Tb_{0.05}O_{3-a} (SCTb)
 - $-SrZr_{0.95}Y_{0.05}O_{3-a}(SZY)$
- General observations
 - All four materials are functional for H₂ detection
 - Moderately higher sensitivity for cerate-based (SCTm and SCTb)
- Stability in simulated gases will be evaluated in Year-2

Perovskite Reaction with Gases

• Gas-induced changes in defect type and population, electron states and band gap energy, lattice parameters, and density of the oxide alter the electric conductivity and optical properties (e.g. refractive index).

High temperature gas-solid reactions:

$$V_{O}^{\bullet\bullet} + \frac{1}{2}O_{2} \longleftrightarrow O_{O}^{X} + 2h^{\bullet}$$

$$[h^{\bullet}] = \sqrt{k_{1}}P_{O2}^{1/4}[V_{O}^{\bullet\bullet}]^{1/2}[O_{O}^{X}]^{-1/2}$$

$$H_{2} + 2h^{\bullet} + O_{O}^{X} \longleftrightarrow^{k_{2}} \rightarrow 2OH^{\bullet}$$

$$[OH^{\bullet}] = \sqrt{k_{2}}P_{H2}^{1/2}[h^{\bullet}][O_{O}^{X}]^{1/2}$$

$$H_{2} + 2O_{O}^{X} \longleftrightarrow^{k_{3}} \rightarrow 2OH^{\bullet} + 2e^{-}$$

$$[OH^{\bullet}]n = \sqrt{k_{3}}P_{H2}^{1/2}[O_{O}^{X}]$$

$$O_O^X \xrightarrow{\text{Re } d.} \xrightarrow{\frac{1}{2}} O_2 + V_O^{\bullet \bullet} + 2e^-$$

$$H_2O + V_O^{\bullet \bullet} + O_O^X \longleftrightarrow 2OH^{\bullet}$$

$$H_2S + V_O^{\bullet \bullet} + 2O_O^X \longleftrightarrow 2OH^{\bullet} + S_{(S)}$$

Possible Interferences by H2S, CO, CH4 etc., which were found to be insignificant at 500°C

Procedure of Thin Film Coating

EXAMPLE: $Sr(Ce_{0.8}Zr_{0.1})Y_{0.1}O_{2.95}$ (SCZY) nano-film synthesis

Typical Microstructure and Index of Nanofilm

The surface (AFM) and crosssection (SEM) of SCZY film on Si

Refractive index (n) and extinction constant (k) by ellipsometry

Effect of Operation Temperature on H₂ Sensitivity and Sensor Stability

Response of the SCZY-LPFG to 5% H₂ in N₂ as a function of temperature

SCZY-LPFG thermal drift at different temperatures

Increasing temperature provides higher sensitivity by lowers stability

Effect of Operation Temperature on Interference from Other Gases in H₂ Detection

#5-SCZY-LPFG-5%CO

3
2
1
0
300 350 400 450 500 550 600

Temperature (degC)

Response of the SCZY-LPFG to 5% CO_2 in N_2 vs. temperature

Response of the SCZY-LPFG to 5% CO in N₂ vs. temperature

Response of the SCZY-LPFG to 5% CH₄ in N₂ vs. temperature

Response of the SCZY-LPFG to 5% H₂S in N₂ vs. temperature

Response of the SCZY-LPFG to 3% H₂O in N₂ vs. temperature

Response of the SCZY-LPFG to 5% H_2 in N_2 vs. temperature

Compared to the Interferences from H_2O , CO_2 , H_2S , CO, and CH_4 are insignificant at temperatures up to 500 °C; the interferences from these gases (except for CO) increase with temperature at > 550°C; Thus, operating at 500 oC also minimizes the interferences for measurement of H2 in coal-derived syngas.

Effect of Operation Temperature on H₂ Sorption and Electric Conductivity of SCZY

Hydrogen uptake in SCZY nanoparticles at difference temperatures

Total electric conductivity of the SCZY film as a function of temperature in 5% H₂ and pure helium

3.1 Development of Sensing Materials

— Copper-Doped-Zirconia (CDZ)

Materials synthesized and tested

- CDZ (0% Cu; i.e. pure zirconia)
- CDZ (3% Cu)
- CDZ (8% Cu)
- CDZ (16% Cu)

General observations

- Pure ZrO₂: very low sensitivity (small response in DI_R)
- High Cu-content: high sensitivity but low stability due to over reduction to form Cu⁰ which segregates irreversibly to grain boundaries in the film.
- Low Cu content: large measuring range but low sensitivity for low-concentration CO detection.

3.1 Development of Sensing Materials

Copper-Doped Zirconia for CO Detection

Small response by ZrO₂-LPFG:

$$ZrO_2 + CO \rightarrow ZrO_{2-\delta} + CO_2$$

Reverse reaction in O₂:

$$ZrO_{2-\delta} + O_2 \rightarrow ZrO_2$$

Pure Zirconia (0%)

Enhanced response by Cu dopant:

$$CuO + CO \rightarrow Cu_2O + CO_2$$

Reverse reaction in O₂:

$$Cu_2O + \frac{1}{2}O_2 \rightarrow 2CuO$$

Copper-doped Zirconia (3%Cu)

CDZ-LPFG: DI_R as a function of CO concentration at 550°C and 1 atm – effect of Cu content

- Pure ZrO2: very low sensitivity (small response in DIR)
- High Cu-content: high sensitivity; low stability due to Cu⁰ formation
- Low Cu content: large measuring range; low sensitivity for lowconcentration CO

4. Summary of Work Done

Design, fabrication and preliminary test of the two types of fiber devices:

- Extensively studied the device physics of the two proposed sensor platforms
- Preliminarily evaluated the device performance in high temperature environment
- Developed strategies for temperature compensation and multiparameter measurement
- Derived device design guidelines

Proton conducting perovskite oxide film synthesis, characterization, and study for H₂ sensing

- Developed procedures for the synthesis of four perovskite oxide thin films;
- Studied the H₂ sorption and electrical conductivity as functions of temperature;
- Investigated the effect of temperature on H₂ sensitivity, thermal drifting, interferences of other gases for the SCZY-LPFG;
- 500°C is the desirable operation temperature to minimize the thermal instability and avoid interferences from co-existing gases, although higher temperature offers higher sensitivity.

Copper doped zirconia (CDZ) film synthesis and study for CO sensing

- CDZ nanofilms with various Cu content (0 ~ 16%) were synthesized on LPFG;
- The CO detection sensitivity (at 550°C) in creases with increasing Cu content;
- The stability of the CDZ film decreases with increasing Cu content (material instability caused by over reduction of Cu²⁺ to copper metal, i.e. Cu⁰);
- Lower Cu content allows for wider measuring range for CO (with higher up limit)
- CDZ-LPFG is well suited for low concentration CO monitoring, e.g. combustion exhaust ...

5. Work Plan for Year-2 (Phase-II)

- <u>Task 3.0</u>: Fabricate the LPFG-coupled interferometer and evanescent tunneling fiber sensors and conduct extensive characterizations on doped-ceramic materials and microstructures of the nanofilms.
 - Subtask 3.1 (Xiao MST) Fabricate the LPFG-coupled interferometer and evanescent tunneling fiber devices using an existing CO₂-laser fabrication process.
 - Subtask 3.2 (Dong, UC) Examine the properties of the material for sensor application and optimize the composition and crystallite size of the ceramic materials.
 - Subtask 3.3 (Dong, UC) Synthesize doped-ceramic nanofilms on structured fibers and optimize the grain size, thickness, and density to enhance the sensor performance.
 - Subtask 3.4 (Xiao/MST and Dong/UC) Test the optical sensors for binary gas mixtures containing N₂ and a target gas at high temperatures with and without water vapor.

Appendix: Publications

Peer-reviewed journal papers:

- 1. X. Tang, K. Remmel, X. Lan, J. Deng, H. Xiao, J. Dong, Perovskite-Type Oxide Thin Film Integrated Fiber Optic Device for High Temperature Hydrogen Measurement. *Analytical Chemistry* 81 (2009) 7844-7848.
- 2. Y. Zhang, Y. Li, T. Wei, X. Lan, Y. Huang, G. Chen, H. Xiao, "Fringe Visibility Enhanced Extrinsic Fabry-Perot Interferometer Using a Graded Index Fiber Collimator," IEEE Photonics Journal, 2010, doi: 10.1109/JPHOT.2010.2049833
- 3. X. Tang, Z. Xu, S.-J. Kim, J. Dong, H. Duan, H. Xiao, Gas Sensing by Zeolite Coated Fiber Optical Device Based on Selective Molecular Adsorption. *Langmuir* (2010) <u>submitted.</u>

Conference papers/presentations:

- 1. Y. Zhang, X. Lan, T. Wei, H. Duan, H. Xiao, Side-coupled optical fiber devices for sensing applications. *SPIE Symp. on Defense, Security + Sensing*, Orlando, FL, USA, Apr. 5-9, 2010.
- 2. X. Tang, Z. Xu, J. Dong, H. Duan, H. Xiao, Development of Nanocrystalline Thin Films of Proton Conducting Perovskite Oxides for High Temperature H₂ Separation and Optical Probing in Fossil Fuel Gases. *AIChE Annual Meetg.*, Salt Lake City, UT, USA, Nov. 7 -12, 2010.
- 3. X. Tang, K. Remmel, D. Sandker, Z. Xu, J. Dong, Proton Conducting Perovskite-Type Ceramics for Fiber Optic Sensors for Hydrogen Monitoring at High Temperature. *SPIE Symposium on Defense, Security* + Sensing, Orlando, FL, USA, Apr. 5-9, 2010.
- 4. Hongbiao Duan, Xinwei Lan, Tao Wei, Yinan Zhang and Hai Xiao, Characteristics and application of phase-shifted long-period fiber grating fabricated by CO2 laser. SPIE Symposium on Defense, Security + Sensing, Orlando, FL, USA, Apr. 5-9, 2010.
- 5. J. Dong, X. Tang, K. Remmel, H. Xiao, Nanostructured Inorganic Thin Film Enabled Fiber Optic Sensors for Gas Sensing in Energy and Environmental Systems, *MS&T Conference*, Pittsburgh PA, Oct. 2009.